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Abstract. Since 2000, pairings have found many applications in cryp-
tography. Pairing computation is very costly on limited devices such as
smart cards but it could be made more efficient if the limited device
may outsource some computation to a more computationally powerful
(but potentially malicious) device. In this setting, it is important to en-
sure the limited device that the computation was carried out correctly.
Known verifiable pairing delegation protocols still have a prohibitive cost
for limited devices.
We study the question of how a limited device can delegate many pairing
computations at once to a potentially malicious and powerful device.
We propose four efficient batch pairing delegation protocols which are
much more efficient than previous constructions (on the state-of-the art
optimal Ate pairing on a Barreto-Naehrig curve). We notably propose the
first batch pairing delegation protocols for variable and public left-side
and right-side inputs for the pairing and we apply this scheme to improve
the efficiency of batch verification of popular short signatures schemes
(namely, Boneh-Lynn-Shacham and Pointcheval-Sanders signatures).
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1 Introduction

We address the practical problem of speeding up pairing computations in cryp-
tography using an untrusted computational resource. In particular, we introduce
new efficient protocols for outsourcing pairing computations from a computation-
ally limited device to an untrusted helper in such a way that the limited device
has some insurance that the computation was carried out correctly.

Outsourcing Pairing Computation. Since their introduction in cryptogra-
phy [20, 7], pairings have found many applications (for instance they are used
to design efficient identity-based encryption schemes [7] or short signatures
schemes [8]). A pairing is a bilinear, non-degenerate and (efficiently) computable



map e : G1 ×G2 → GT . In practice, the first two groups G1 and G2 are prime-
order ` subgroups (denoted additively) of the group of points E(Fq) of an elliptic
curve E defined over a finite field Fq and the so-called target group GT (denoted
multiplicatively) is the order ` subgroup of a finite field extension Fqk .

Due to their importance in cryptography and since pairings are resource
consuming, a lot of work have been devoted to speed up their computation.
In practice, pairings can indeed be computed on computationally constrained
devices such as smart-cards and the pairing computation on such a device can
be very slow. Nowadays a computationally limited device – that we will call the
client – can be connected to a more powerful device – that we will call the server
– (for example a smart-card can be connected to a phone or a phone connected
to a computer). In this setting, the client could compute a pairing with the help
of the server. The client will then interact with the server in a protocol and
outsource some costly operations to the server.

We consider several scenario for the delegation of the pairing computation
e(P,Q) where P ∈ G1 and Q ∈ G2. We would like to satisfy two security notions.
The first security notion called the secrecy or privacy is that during the protocol,
the server should not learn any information about the secret input of the pairing
(if P , Q or both are secret inputs known only by the client). The second notion
called the verifiability is that the client should be able to detect any malicious
server and reject any wrong value output by the server with overwhelming prob-
ability. Obviously, a delegation protocol that does not ensure verifiability may
cause severe security problems (in particular if the pairing computation occurs
in the verification algorithm of some authentication protocol).

In 2005, Hohenberger and Lysyanskaya [19] provided a formal security def-
inition for securely outsourcing computations from a computationally limited
device to untrusted helpers. They introduced protocols where the client out-
sources computation to two, possibly dishonest, servers that are physically sep-
arated (and do not communicate). Many verifiable pairing delegation protocols
were proposed in this setting (see [28] and references therein for a recent survey).
This separation of the two servers is actually a strong assumption hard to be met
in practice and it is more realistic to consider scenarios where the client delegate
some computation to a single server. Unfortunately, in the present state-of-the-
art, the different proposals for verifiable pairing delegation to a single server
are inefficient and it is even sometimes better in practice to directly embed the
pairing computation inside the restricted device than using these solutions.

In computer science, a direct sum problem asks whether solving n indepen-
dent copies of a given task requires n times the amount of resources needed to
solve a single copy. This fundamental question has been studied in many crypto-
graphic scenarios. Due to the inefficiency of the known protocols for delegation
of a unique pairing, it is an interesting problem to propose efficient protocols
when the client wants to compute several pairings at the same time. Improving
prior work from the literature, we consider this batch pairing delegation scenario
in this paper.
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Prior work. Girault and Lefranc [17] proposed in 2005 the first pairing del-
egation protocol that achieves secrecy but not verifiability. In 2014, Guillevic
and Vergnaud [18] proposed a more efficient scheme but their method increases
communication complexity between the client and the server (and their scheme
does not provide verifiability).

In 2005, Chevallier-Mames, Coron, McCullagh, Naccache and Scott [15, 16]
introduced the security notions of verifiable pairing delegation protocol and pro-
posed the first verifiable pairing delegation protocol. The drawback of their pro-
tocol is that it is more costly for the client than computing the pairing himself.
Later in 2014, Canard, Devigne and Sanders [12] improved their construction
and proposed a much more efficient verifiable delegation protocol. Canard, De-
vigne and Sanders showed that their construction is more efficient for the client
than computing a pairing himself on the so-called KSS-18 curve [21]. Later,
Guillevic and Vergnaud [18] showed that Canard, Devigne and Sanders protocol
is actually less efficient than computing a pairing for the state of the art optimal
Ate pairing on a Barreto-Naehrig curve [5].

In 2007, Tsang, Chow and Smith [27] introduced the security notion of batch
pairing delegation protocols and propose the first batch pairing delegation pro-
tocols when the client wants to compute several pairings e(Pi, Qi) where Pi ∈ G1

and Qi ∈ G2 for i ∈ {1, . . . , n}. Their main protocol works only when one of the
input is constant (i.e. when Q1 = · · · = Qn = Q ∈ G2). Moreover, in the setting
where the constant input is secret, their protocols use costly exponentiations
in the target group of the pairing and is then more resource consuming for the
client than computing himself the pairings independently.

Contributions of the paper. In this paper, we propose four new efficient
batch pairing delegation protocols. In the case where the right-side input is
constant and public and the left-side inputs are variable and public, we proposed
a protocol similar to the one of Tsang, Chow and Smith [27] but which is much
more efficient by using endomorphisms as it was done by Guillevic and Vergnaud
[18] and small exponents. We estimate the efficiency of the proposed protocol on
the optimal Ate pairing on a Barreto-Naehrig curve. For a 128-bit security, we
obtain a 74% improvement for the client compared to independent computations
of many pairings by the client while the protocol of Tsang, Chow and Smith gives
a 5% improvement. In the case where the right-side input is constant and secret
and the left-side inputs are public and variable, we proposed a more efficiently
protocol than the one proposed by Tsang, Chow and Smith. Our constructed
protocol uses less costly scalar multiplications in the inputs groups of the pairing
rather than costly exponentiations in the target group. For a 128-bit security, we
obtain a 52% improvement for the client compared to independent computations
of many pairings by the client while the protocol of Tsang, Chow and Smith is
more costly for the client than if he computes the pairings himself. Finally, in the
setting where the left and right-side inputs are variable, Canard, Devigne and
Sanders said that they do not see how it is possible to construct a batch pairing
delegation protocol without costly exponentiations in the target group. We show
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that it is possible to do so and we propose the first batch pairing delegation
protocol in this setting. For a 128-bit security, we obtain a 40% improvement
for the client compared to independent computations of many pairings by the
client. We show how such a protocol can be used to increase the efficiency of
batch signature verification of some popular short signatures schemes (Boneh-
Lynn-Shacham [8] and Pointcheval-Sanders signatures scheme [25]).

2 Preliminaries

2.1 Batch Verification

Many of the computational tasks in cryptography are for the purpose of veri-
fying some property: signatures, message authentication codes or identification
schemes involve verification procedures that assure the verifier of the validity of
the input. This property is usually defined by a set of mathematical equations
and the verification process involves algebraic operations to check whether these
relations holds. One approach formalized by Bellare, Garay and Rabin [6] is the
use of batching for the purpose of speeding up several verifications. The idea,
called the small exponents test is to use randomization to verify multiple equa-
tions simultaneously at the cost of a single equation verification. This technique
has found various applications due to its low computation load and time at the
verifier.

The soundness of this batching technique relies on the following celebrated
lemma from Schwartz and Zippel [30, 26].

Lemma 1. (Schwartz-Zippel [30, 26]) Let F be a finite field and P (x1, . . . , xn) ∈
F[x1, . . . , xn] be a multivariate polynomial of degree d. Let r1, . . . rn be chosen
independently and uniformly at random from a subset S of F. If P is a nonzero
polynomial, then

Pr[P (r1, . . . rn) = 0] ≤ d

]S
.

2.2 Pairings

Let G1,G2 be two additive cyclic groups of prime order ` and GT be a multi-
plicative cyclic group of the same order `. An admissible bilinear map or pairing
is a map e : G1 ×G2 → GT which satisfies the following properties:

1. Bilinearity: for all a, b ∈ F`, P ∈ G1 and Q ∈ G2, e(aP, bQ) = e(P,Q)ab;
2. Non-degeneracy: for P 6= 1G1

, Q 6= 1G2
, we have e(P,Q) 6= 1GT

;
3. Efficiency: e is efficiently computable.

In practice, G1 is a subgroup of the group of rational points E(Fp) of an elliptic
curve E over a prime finite field Fp, G2 is a subgroup of the group of rational
points E(Fpk) of the elliptic curve E defined over finite field extension Fpk (where
k is called the embedding degree and is the smallest integer such that ` divides
pk − 1) and GT is a subgroup of Fpk . In practice, the value e(P,Q) is computed
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in two steps using Miller’s algorithm [24]: in the first step, called the Miller
loop, the algorithm outputs some value f and in the second step, called the final

exponentiation, e(P,Q) is obtained by computing f
pk−1

` .
In this paper, for practical purposes we consider the Optimal Ate pairing on

a Barreto-Naehrig Curve with embedding degree k = 12. These curves indeed
provide one of the most efficient instantiations of bilinear maps in cryptography
(but it is worth mentioning that our protocols are generic and can be used on
all pairing instantiations and for instance on Barreto-Lynn-Scott curves [4])).
Due to the recent attacks on the discrete logarithm problem in subgroups of the
multiplicative group of finite field extension Fpk (see [22] and references therein),
to achieve a 128-bit security level, users have to use a prime number p of 461
bits (in order to have finite field extension size of 5534 bits) [2].

Arithmetic Efficiency on Barreto-Naehrig Curves. We recall some esti-
mations provided by [18] using the Relic Library of Aranha [1] on a Barreto-
Naehrig Curve at the 128-bit security level. As mentioned above, p has to be at
least a 461-bit prime number due to the most efficient known attack to solve the
discrete logarithm problem in Fpk . We will use these estimations in the forth-
coming sections to compare the efficiency of our pairing delegation protocols
with the existing protocols.

The average cost for a scalar multiplication with an exponent a of bit-length
log2 a in G1 is 10.7 log2 amultiplications1 in Fp (i.e. 4933Mp if log2 a = 461 where
Mp denotes the cost of one multiplication in the finite field Fp), 25.7 log2 a for
a scalar multiplication in G2 (i.e. 11848Mp if log2 a = 461) and 36 log2 a for an
exponentiation in GT (i.e. 16596Mp if log2 a = 461). The cost for an addition in
G1 is 11Mp, 29Mp for an addition in G2 and 54Mp for a multiplication in GT .
The average cost for an optimal Ate pairing computation on a Barreto-Naehrig
curve with k = 12 is (102. log2 s + 80/3. log2 s + 8048)Mp (the total cost for
the Miller loop is (102. log2 s + 80/3. log2 s + 137)Mp and the total cost for the
final exponentiation is 7911Mp see [18] for details), where s = 6t+ 2 and p is a
polynomial of degree 4 in t, namely log2 s ≈ log2 p/4. Then for a 461-bit prime
p, the average average cost for an optimal ate pairing computation on a Barreto-
Naehrig curve with k = 12 is 22876Mp. These estimates can be found in Tab. 3
(see Appendix A).

Boyd and Pavlovski [9] proposed efficient attacks on many batch verification
protocols if the elements output by the potentially malicious server are not check
to belong to the appropriate group. In our batch pairing delegation protocols,
we have to verify that the elements output by the server belong to the target
group GT of the pairing. Otherwise, the efficient attacks proposed by Boyd and
Pavlovski can be adapted to break our constructions. Recently, Barreto, Costello,
Misoczki, Naehrig, Pereira and Zanon [3] proposed a solution to avoid subgroups
attacks on some pairings used in practice in cryptography. Their solution gives

1 This cost assumes that scalar multiplications are performed with a binary signed
representation of a, see [18] for details.
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a way to test group membership in GT (see [3] for details and proofs). On
a Barreto-Naehrig curve with k = 12, GT is the cyclotomic subgroup of order
Φk(p) in F?pk , and it is then easy to check that an element g ∈ GT (just check that

gp
4 ·g = gp

2

). This membership check is almost free and costs one multiplication
in Fpk .

2.3 Boneh-Lynn-Shacham and Pointcheval-Sanders Signatures

In this section we recall the Boneh, Lynn and Shacham signature scheme and
Pointcheval and Sanders signature scheme that we use in the forthcoming sec-
tions for the applications of our proposed batch pairing delegation protocols.

Boneh-Lynn-Shacham signature scheme. This short signature scheme was
proposed by Boneh, Lynn and Shacham [8]. This signature scheme is provably
secure in the random oracle model under the so-called Computational Diffie-
Hellman assumption. The scheme is defined by the four following algorithms

– Setup. The user generates three groups G1, G2 (with additive notation)
and GT (with multiplicative notation) of the same prime order ` having an
efficiently computable pairing e : G1 ×G2 → GT , where G2 is generated by
some element P . Let H : {0, 1}∗ → G1 be a collision-resistant hash function
(modeled as a random oracle in the security reduction).

– Key generation. The user picks uniformly at random x ∈ Z`, computes
Q = xP (with the notation xP = P + · · ·+ P︸ ︷︷ ︸

x times

), sets sk = x and pk = Q.

– Signature generation. Given a message m ∈ {0, 1}∗ and the secret key
sk = x, the user computes the hash value H(m) ∈ G1 and outputs the
signature σ = xH(m).

– Signature verification. Given σ ∈ G1 and the public key pk = Q, a verifier
accepts it as a signature on H(m) ∈ G1 if and only if:

e(σ, P ) = e(H(m), Q)

Pointcheval-Sanders signature scheme. Camenisch and Lysyanskaya [11]
proposed a signature scheme provably secure in the standard model under the so-
called LRSW assumption [23]. Their scheme can be used to construct efficient
anonymous credential systems, efficient group signature and efficient identity-
based scheme. One of the drawbacks of the Camenisch-Lysyanskaya signature
scheme is its size linear in the number of messages to be signed and the use of
(inefficient) symmetric pairing. In order to deal with this drawbacks, Pointcheval
and Sanders [25] proposed a signature scheme which has the same features as
Camenisch-Lysyanskaya signature scheme. Their signature scheme is provably
secure in the standard model under the LRSW assumption and is defined by the
four following algorithms
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– Setup. The user generates three groups G1,G2 (with additive notation),
GT (with multiplicative notation) of prime order ` having an efficiently com-
putable pairing e : G1 ×G2 → GT .

– Key generation. The user picks uniformly at random x, y ∈ Z`, P ∈ G2

and computes X = xP , Y = yP and sets sk = (x, y) and pk = (P,X, Y ).
– Signature generation. Given a message m ∈ Zp and the secret key sk =

(x, y), the user chooses a random element R ∈ G1 \ {1G1
} and outputs the

signature σ = (R, (x+my)R).
– Signature verification. Given σ = (R,S) ∈ G2

1 and the public key pk =
(P,X, Y ), a verifier accepts it as a signature on m ∈ Z` if and only if :

R 6= 1G1
and e(R,X +mY ) = e(S, P ).

3 Pairing Delegation Protocol – State-of-the-Art

3.1 Definitions

As mentioned in the introduction, a secure computation outsourcing scheme
mainly addresses two issues: the privacy of the inputs/output of the outsourced
computational problem and the validity of the returned results. Following [19,
29], we briefly recall the definition of a secure outsourcing scheme as a 4-tuple
(T ,S,R,V) consisting of four different probabilistic algorithms:

1. Problem Transformation T : F (x)→ G(y). The client locally transforms
the problem F (x) to a new form G(y), where y is the new input and G is
the new problem description. The client then outsources G(y) to the server.

2. Server Computation S : G(y) → (Ω,Γ ). The server solves the trans-
formed problem G(y) to obtain the corresponding result Ω. At the same
time, S returns Γ that is a proof of the validity of the result.

3. Result Recovery R : Ω → ω. Based on the returned result Ω, the client
recovers the result ω of the original problem F (x).

4. Result Verification V : (Ω,Γ, ω)→ > = {True,False}. Based on ω,Ω and
the proof Γ , the client verifies the validity of the result.

The following requirements are desirable properties for secure outsourcing schemes:

1. Correctness: given that the server is honest, the client can successfully
recover the correct result ω from the returned result Ω. That is R(Ω) = ω.

2. Privacy: the server is unable to derive any key information about the orig-
inal input x and output ω from the transformed problem G, the new input
y and the new output Ω.

3. Verifiability: an honest client interacting with a dishonest server (which
would like the client to accept a wrong value ω) will output an error message
V(Ω,Γ, ω) = False with overwhelming probability.

In this paper, our main goal is to achieve verifiability and to measure the per-
formance of such a scheme, we adopt the definitions proposed in [19]:
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Definition 1 (α-efficient). Suppose the running time of a task F for the client
is t0 and the running time of local processing (T ,R,V) for the client is tp. Then
the outsourcing scheme is α-efficient if t0

tp
≥ α.

Definition 2 (β-verifiable). Given the returned output Ω and the proof Γ ,
denote the probability that the client is able to verify the validity of the result ω
as ρ. Then the outsourcing scheme is β-verifiable if ρ ≥ β.

From these definitions, we can see that a larger α indicates a better performance
of a secure outsourcing scheme, while a larger β means a better verifiability.

3.2 Tsang-Chow-Smith Batch Pairing Delegation Protocol

In this section we recall the batch pairing delegation protocol proposed by Tsang,
Chow and Smith [27] presented for the sake of simplicity as Algorithm 1. They
proposed a protocol for a client who wants to delegate n pairing computations
e(Pi, A) for i ∈ {1, . . . , n} for variable and secret points P ′is and a constant and
secret point A.

Algorithm 1: Tsang-Chow-Smith batch pairing delegation protocol

Input: n secret and variable points P ′i s and a secret point A
Output: e(P1, A), . . . , e(Pn, A)

1 The client selects a random point Q̃, a random element rA ∈ Z` and

precomputes Ã = rAA and χ = e(Q̃, Ã)

2 The client selects n random elements r1, . . . , rn ∈ Z` and computes P̃i = riPi,
for i ∈ {1, . . . , n}

3 The client selects n random elements b1, . . . , bn ∈ Z` and computes

P̃0 = Q̃+
∑n
i=1 biP̃i

4 The client sends P̃0, . . . , P̃n and Ã to the server

5 The server computes αi = e(P̃i, Ã), for i ∈ {0, . . . , n}
6 Verification:
7 The client verifies that α0, . . . , αn ∈ GT
8 The client computes α′ = χ.

∏n
i=1(αi)

bi

9 if α0 = α′ then

10 outputs (α
1

rAr1
1 , . . . , α

1
rArn
n )

11 else
12 outputs ⊥ and halts

With the formalism from the previous section, the Problem Transformation
T corresponds to step 1-4, the Server Computation corresponds S corresponds to
step 5, the Result Verification V corresponds to step 8-9 and the Result Recovery
R) corresponds to step 10.

We now analyze the overall computational cost for the client with pre-
computations in Algorithm 1 with 128-bit security on the Optimal Ate pairing
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on Barreto-Naehrig with 461-bit primes p and `. Our analysis is done for public
and variable points P ′is and public and constant point A and for public and
variable points P ′is and secret and constant point A:

– For public and variable points P ′is and public and constant point A, Tsang,
Chow and Smith proposed Algorithm 1 with r1 = · · · = rn = 1 and rA = 1.
The overall computational cost for the client is (461× 10.7n+ 11n+ 54(n+
1) + 461 × 36n + 54n)Mp = (21647.7n + 54)Mp (corresponding in step 3
to n scalar multiplications with exponents of bit-length at most 461 and n
point additions in G1, in step 7 to n + 1 membership check in GT and in
step 8 to n exponentiations with exponents of bit-length at most 461 and n
multiplications in GT ).
On a Barreto-Naehrig curve with a 461-bit prime, the overall cost for the
client to compute the n pairings in the naive way is 22876nMp. The compu-
tational ratio of the protocol is (21647.7n+ 54)/(22876n) ≈ 0.95 (or equiv-
alently the scheme is 1.06-efficient).

– For secret and variable points P ′is and secret and constant point A, Tsang,
Chow and Smith proposed Algorithm 1 with r1 = · · · = rn = 1. The overall
computational cost for the client is (461×10.7n+461×10.7n+11n+54(n+
1)+461×36n+54n+461×36n)Mp = (43122.4n+54)Mp (corresponding in
step 2 to n scalar multiplications with exponents of bit-length at most 461,
in step 3 to n scalar multiplications with exponents of bit-length at most 461
and n point additions in G1, in step 7 to n+ 1 membership check in GT , in
step 8 to n exponentiations with exponents of bit-length at most 461 and n
multiplications in GT , and in step 10 to n exponentiations with exponents
of bit-length at most 461 in GT ). In this case, the protocol is more costly
than computing the pairings directly for the client and the computational
ratio of the protocol in this setting is (43122.4n+ 54)/(22876n) ≈ 1.89.

4 Batch Pairing Delegation Protocols

It seems difficult to provide verifiable pairing delegation protocols without ex-
pensive exponentiation in GT by the client. A solution is to allow the client to
delegate many pairing computations at once with lower costs than delegating in-
dependently each pairing computation. We provide four verifiable pairing delega-
tion protocols that allow the client to compute n pairings e(P1, Q1), . . . , e(Pn, Qn),
where the points Pi, Qi are variable and public or secret.

4.1 Case where Pi, Qi are public and Q1 = Q2 = · · · = Qn = Q

In this section, we suppose that the points P ′is are variable and public and the
points Q′is are constant, public. Our proposed batch pairing delegation protocol
(Algorithm 2) is similar to the batch delegation protocol proposed in [27]. The
difference with their protocol is that we use small coefficients in our scheme in
order to deal with applications with specific verifiability and we use endomor-
phisms as it was done in [18, 13] for improving efficiency for large n.
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Algorithm 2: Batch Pairing delegation with Pi, Qi public and Qi constant

Input: n public and variable Pi, Qi and Q1 = Q2 = · · · = Qn = Q
Output: e(P1, Q1), . . . , e(Pn, Qn)

1 The client selects a random point P0 and precomputes χ = e(P0, Q)
2 The client sends P1, . . . , Pn and Q to the server
3 The server computes αi = e(Pi, Q), for i ∈ {1, . . . , n}
4 Verification:
5 The client selects n random elements a1, . . . , an ∈ {0, 1, . . . , 2t − 1} (for some

integer t)
6 The client computes P ′i = σi(Pi), for an endomorphism σi ∈ S and for

i ∈ {1, . . . , n}
7 The client computes P = P0 +

∑n
i=1 aiP

′
i

8 The server computes α0 = e(P,Q)
9 The client verifies that α0, . . . , αn ∈ GT

10 The client computes α′ = χ.
∏n
i=1(ασii )ai

11 if α0 = α′ then
12 outputs α1, . . . , αn
13 else
14 outputs ⊥ and halts

Remark 1. During the computation of α′, ασi
i = e(σi(Pi), Q) can be computed

with a cheap endomorphism σi in F?pk and costs 8 multiplications in Fp. S is the

set of endomorphisms on E(Fp) and for the optimal Ate pairing on a Barreto-
Naehrig curve, S = {Id,−Id, φ, φ2,−φ,−φ2}, where φ is the endomorphism
computed from the complex multiplication on the curve. For σ ∈ S, the com-
putation of the image of a point by σ is almost free and costs at most one
multiplication and one subtraction in Fp.

We obtain readily the following security theorem using the well-known tech-
niques of batch verification [6, 10]:

Theorem 1. The batch pairing delegation protocol described in Algorithm 2 is
β-verifiable with β = 1− 1/(2t ·#S).

We provide a sketch of proof in the following (but the complete proof is post-
poned to the full version of the paper).

Proof (Sketch). The small exponents (a1, . . . , an) are information-theoretically
hidden from the server and if the server sends correct values αi = e(Pi, Q), we
indeed have α0 = α′ with α′ = χ.

∏n
i=1(ασi

i )ai .

Let us assume that a malicious server sends to the client at least one value αi
such that αi 6= e(Pi, Q) for some i ∈?{1, . . . , n}. Since the client checks that the
elements αi actually belongs to GT , the probability that α′ = α0 with at least
one wrong αi is upper-bounded by (2−t/#S) (by the Schwartz-Zippel Lemma
and the soundness of the small-exponent verification test [6, 13]) and we obtain
the claimed security. ut
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Table 1. Efficiency of our protocol

t n Security
Computational Ratio

α β
Cost Cost

58 5 60 14237Mp 0.12 8.03 1− 2−60

78 10 80 37760Mp 0.16 6.06 1− 2−80

98 20 100 94146Mp 0.2 4.86 1− 2−100

118 50 120 281984Mp 0.24 4.06 1− 2−120

126 100 128 601274Mp 0.26 3.80 1− 2−128

We now analyze the overall computational cost for the client with pre-
computations in Algorithm 2. Step 6 costs at most nMp (at most 1Mp for each
σi), step 7 costs at most (10.7tn+ 11n)Mp (n scalar multiplications with expo-
nents of bit-length at most t and n additions in G1), step 9 costs 54(n+1)Mp(n+1
membership check in GT ), step 10 costs ((8n+36nt)+54n)Mp(n endomorphisms
exponentiations, n exponentiations with exponents of bit-length at most t and
n additions GT ).

The overall cost for the client is therefore 46.7tn + 128n + 54. Note that
on a Barreto-Naehrig curve with a 461-bit prime, the overall cost for the client
to compute the n pairings in the naive way is 22876nMp. The computational
ratio is (46.7tn+ 128n+ 54)(22876n). For 128-bit security (i.e. for (1− 2−128)-
verifiability), our computational cost is about 0.26 of the cost of a n pairings
and our protocol is 3.84-efficient and is much better than the one proposed
by Tsang, Chow and Smith whose computational cost is 0.95. In our scheme,
the client sends (n + 2) points to the server and the server computes (n + 1)
pairings. In Table 1, we summarize the computational cost for the client and the
computational ratio for various values of n, t.

4.2 Case where Pi, Qi are public and variable

In this section, we propose two batch pairing delegation protocols (Algorithm 3
and 4) when P ′is and Q′is are variable and public. They are the first batch pairing
delegation protocols where all inputs are variable. We analyze the efficiency of
these protocols and compare them for a fixed β-verifiability (for instance 128-bit
security, i.e. β = 1 − 2−128) when the number n of pairings to be computed
grows.

These two delegation protocols make use of a parameter t and we obtain
readily as above the following security theorem (whose simple proof is postponed
to the full version of this paper):

Theorem 2. The batch pairing delegation protocols described in Algorithm 3
and 4 are β-verifiable with β = 1− 2−t.

The overall computational cost for the client in Algorithm 3 is (36tn2 +
36.4tn + 108n2 + 40n + 22782)Mp. In fact, step 5 costs at most 54n2Mp (n2

membership check in GT ), step 6 costs at most (10.7tn + 11(n − 1) + 25.7tn +
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Algorithm 3: Batch Pairing delegation with Pi, Qi public and variable

Input: n public and variable Pi, Qi
Output: e(P1, Q1), . . . , e(Pn, Qn)

1 The client sends P1, . . . , Pn and Q1, . . . , Qn to the server
2 The server computes αi,j = e(Pi, Qj), for i, j ∈ {1, . . . , n}
3 Verification:
4 The client verifies that αi,j ∈ GT , for i, j ∈ {1, . . . , n}
5 The client selects 2n random elements a1, b1 . . . , an, bn ∈ {0, 1, . . . , 2t − 1}
6 The client computes P =

∑n
i=1 aiPi and Q =

∑n
i=1 biQi

7 The client computes α = e(P,Q)

8 The client computes α′ =
∏n
i,j=1 α

aibj
i,j

9 if α = α′ then
10 outputs α1,1, . . . , αn,n
11 else
12 outputs ⊥ and halts

29(n − 1))Mp (n scalar multiplications with exponents of bit-length at most t
and n additions G1 and G2), step 7 costs 22876Mp (one pairing computation),
step 8 costs at most (36tn2 + 54(n2−1))Mp (n2 exponentiations with exponents
of bit-length at most t and n2 − 1 multiplications in GT ). The computational
ratio is (36tn2 + 36.4tn+ 108n2 + 40n+ 22782)/(22876n). In Algorithm 3, the
client does not have pre-computations to do and sends 2n points to the server
and the server computes n2 pairings.

Algorithm 4: Batch Pairing delegation with Pi, Qi public and variable

Input: n public and variable Pi, Qi
Output: e(P1, Q1), . . . , e(Pn, Qn)

1 The client selects n random elements λ1, . . . , λn ∈ {0, 1, . . . , `− 1} and a
random point R ∈ G2

2 The client precomputes Ri = λiR for i ∈ {1, . . . , n}
3 The client selects n random elements b1, . . . , bn ∈ {0, 1, . . . , 2t − 1}
4 The client computes Q′i = biQi +Ri for i ∈ {1, . . . , n}
5 The client sends P1, . . . , Pn, Q1, . . . , Qn and Q′1, . . . , Q

′
n to the server

6 The server computes αi = e(Pi, Qi) and α′i = e(Pi, Q
′
i), for i ∈ {1, . . . , n}

7 Verification:
8 The client verifies that αi, α

′
i ∈ GT , for i ∈ {1, . . . , n}

9 The client computes P =
∑n
i=1 λiPi

10 The client computes α = e(P,R)

11 The client computes α′ =
∏n
i=1 α

′
i and α′′ =

∏n
i=1 α

bi
i

12 if α′ = α′′ × α then
13 outputs α1, . . . , αn
14 else
15 outputs ⊥ and halts

12



Table 2. Efficiency of Algorithms 3 and 4

t n Security Cost Alg. 3 Cost Alg. 4 Ratio Alg. 3 Ratio Alg. 4

32 2 32 30231Mp 37137.2Mp 0.66 0.81

32 4 32 47761.2Mp 51463.4Mp 0.52 0.56

32 16 32 364618.8Mp 137420Mp 0.99 0.37

32 32 32 1351575.6Mp 252030.2Mp 1.84 0.34

64 2 64 37169.2Mp 41086Mp 0.81 0.89

64 4 64 70852.4Mp 59361Mp 0.77 0.64

64 16 64 678167.6Mp 169011Mp 1.85 0.46

64 32 64 2568497.2Mp 315211Mp 3.5 0.43

128 2 128 51044.4Mp 48983.6Mp 1.11 1.07

128 4 128 117034.8Mp 75156.2Mp 1.27 0.82

128 16 128 1305265.2Mp 232191.8Mp 3.56 0.63

128 32 128 5002340.4Mp 441572.6Mp 6.83 0.6

In Algorithm 4, step 4 costs at most n(25.7t+29)Mp (n scalar multiplications
with exponents of bit-length at most t and additions in G2), step 8 costs at most
108nMp (2n membership check in GT ), step 9 costs at most (10.7n log2 `+11(n−
1))Mp (n scalar multiplications with exponents of bit-length at most log2 ` and
n − 1 additions in G1), step 10 costs 22876Mp (one pairing computation), step
11 costs at most (54(n− 1) + 36nt+ 54(n− 1))Mp (2(n− 1) multiplications in
GT and n exponentiations with exponents of bit-length at most t in GT ), step
12 costs 54Mp (one multiplication in GT ).

The overall computational cost for the client with pre-computations in Al-
gorithm 4 is 61.7tn+ 5188.7n+ 22811. In Algorithm 4, the client pre-computes
n scalar multiplications in G2 and sends 3n points to the server and the server
computes 2n pairings. In Table 2, we summarize the computational cost for the
client and the computational ratio in Algorithms 3 and 4 for various values of n
and t.

One can see that for β-verifiability with large 1 − β and for small number
of pairing computations, Algorithm 3 is more efficient than Algorithm 4. Algo-
rithm 4 is more suitable for stronger security (for instance t = 128) and for a
fixed β-verifiability Algorithm 4 is much more efficient than the naive method
as the number of pairing computations grows.

4.3 Case where P ′
is are secret and Q1 = · · · = Qn = Q is secret

Tsang, Chow and Smith batch pairing delegation protocol is not efficient for
public P ′is and secret and constant Q (since the client has to compute n costly
exponentiations in GT ). In this section, we propose a more efficient batch pair-
ing delegation protocol (see Algorithm 5) and we compare the efficiency of our
protocol with Tsang, Chow and Smith batch pairing delegation protocol for
128-security bit and for various n.

In Algorithm 5 with the β-verifiability with β = 1 − 1/(6.2t) and t = 126,
the overall computational cost for the client is (461 × 10.7n + 11n + 46.7tn +
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Algorithm 5: Batch Pairing delegation with public and variable Pi and
secret and constant Q

Input: n public and variable Pi,secret and constant Q
Output: e(P1, Q), . . . , e(Pn, Q)

1 The client chooses n random points X1, . . . , Xn ∈ G1, a random element r ∈ Z`
and precomputes Q0 = r−1Q, χi = e(Xi, Q0)−1, for i ∈ {1, . . . , n}

2 The client computes P ′i = rPi +Xi, for i ∈ {1, . . . , n}
3 The client uses Algorithm 2 to compute αi = e(P ′i , Q0), for i ∈ {1, . . . , n}
4 The client computes e(Pi, Q) as αi.χi, for i ∈ {1, . . . , n}

128n+ 54 + 54n)Mp = (11009.9n+ 54)Mp (corresponding in step 2 to n scalar
multiplications with exponents of bit-length at most 461 and n point additions
in G1, in step 3 to computations of n pairing using Algorithm 2, and in step 4 to
n multiplications in GT ). The computational ratio is (11009.9n+ 54)/(22876n)
and is about 0.48. One can see that our batch pairing delegation protocol is more
efficient than the one proposed by Tsang, Chow and Smith whose computational
cost is 1.89.

We obtain again readily the following security theorem (whose simple proof
is postponed to the full version of this paper):

Theorem 3. The batch pairing delegation protocol described in Algorithm 5 is
private and β-verifiable with β = 1− 1/(6.2t).

5 Applications

In this section we present some applications of our batch pairing delegation
protocol (see Algorithm 4) for variable and public inputs to make the batch ver-
ification of Boneh-Lynn-Shacham and Pointcheval-Sanders signatures schemes
more efficient

5.1 Batch Verification of Boneh-Lynn-Shacham Signatures

Batch verification of a signature is a technique to reduce the commputational
cost for the verifier who wants to verify many signatures for an user at once or
many signatures for many different users. In the Boneh-Lynn-Shacham signature
scheme, the verifier has to compute two pairings for a signature verification
and if it wants to verify independently n signatures σi, for i ∈ {1, . . . , n} for
an user or for n different users (for some integer n), the verifier will need 2n
pairing computations. This verification can be made more efficient with batch
verification as it was shown by Camenisch, Hohenberger and Pedersen [10].

1. For one user with pairs of keys (pk, sk), the verifier will accept n signatures
σi on n messages mi, for i ∈ {1, . . . , n} if the following equality holds:

e

(
n∑
i=1

aiσi, P

)
= e

(
n∑
i=1

aiH(mi),pk

)
,
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for some small and random integers ai. The batch verification of the n sig-
natures then needs 2 pairing computations rather than 2n (together with 2n
scalar multiplications in G1 with small exponents).

Using our batch pairing delegation protocols Algorithms 3 and 4 for public
and variable inputs, a verifier can further improve this batch verification
by delegating the computation of these two pairings and saves using Table 2
34% of the computational cost (namely the verifier will compute 1.32 pairings
rather than 2 pairings) for 32-bit security.

2. For n users with pairs of keys (pki, ski), for i ∈ {1, . . . , n}, the verifier will
accept n signatures σi on the n messages mi, for i ∈ {1, . . . , n} (where σi
is the signature of the message mi under the key (pki, ski)) if the following
equality holds:

e

(
n∑
i=1

aiσi, P

)
=

n∏
i=1

e (aiH(mi),pki),

for some small and random integers ai. The batch verification of the n signa-
tures then needs n + 1 pairing computations rather than 2n (together with
2n scalar multiplications in G1 with small exponents). A verifier can fur-
ther improve this verification with Algorithm 4 and computes using Table 2
0.43(n+1) for 64-bit security or 0.6(n+1) pairings for 128-bit security when
n grows.

5.2 Batch Verification of Pointcheval-Sanders Signatures

In the Pointcheval-Sanders signature scheme, the verifier has to compute two
pairings for a signature verification and if he wants to verify independently n
signatures σi, for i ∈ {1, . . . , n} for an user or for n different users (for some
integer n), he will need 2n pairing computations. This verification can be made
more efficient with batch verification as follows:

1. For one user with pairs of keys (pk = (P,X, Y ), sk), the verifier will accept n
signatures σi = (Ri, Si) on n messages mi, for i ∈ {1, . . . , n} if the following
equality holds:

e

(
n∑
i=1

αiRi, X

)
e

(
n∑
i=1

(αimi)Ri, Y

)
= e

(
n∑
i=1

αiSi, P

)
,

for some small and random integers αi. In addition to the scalar multipli-
cations by the messages mi, the verification of the n signatures then needs
3 pairing computations rather than 2n (together with 3n scalar multipli-
cations in G1 with small exponents). The verifier can further improve this
batch verification with Algorithms 3 and 4 and computes 1.62 pairings for
32-bit security.
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2. For n users with pairs of keys (pki = (P,Xi, Yi), ski), for i ∈ {1, . . . , n}, the
verifier will accept n signatures σi on the n messages mi, for i ∈ {1, . . . , n}
if the following equality holds:

n∏
i=1

e(αiRi, Xi +miYi) = e

(
n∑
i=1

αiSi, P

)
,

for some small and random integers αi. In addition to the scalar multipli-
cations by the messages mi, the batch verification of the n signatures then
needs n + 1 pairing computations rather than 2n (together with 3n scalar
multiplications in G1 with small exponents). The verifier can further improve
this batch verification with Algorithms 3 and 4 and computes using Table 2
0.43(n+1) for 64-bit security or 0.6(n+1) pairings for 128-bit security when
n grows.

6 Conclusion

In this paper, we proposed four efficient batch pairing delegation protocols in
many settings which outperformed the previous proposals. We proposed the first
batch pairing delegation protocol in the setting where the left and right-side in-
puts are variable and public and showed its applications in cryptography to
improve the efficiency of batch verification signatures of popular short signa-
tures schemes for instance Boneh-Lynn-Shacham and Pointcheval-Sanders sig-
natures scheme. It remains an open question to construct a generic batch pairing
delegation protocol for variable and secret left and right-side inputs. Another in-
teresting open problem is to provide lower bounds on the efficiency of verifiable
pairing delegation protocols in these various settings (as it was done in [14] for
private delegation of group exponentiation).
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Table 3. Estimations for common operations and for a Barreto-Naehrig curve with
k = 12 and log p = 461 bits.

Operation cost total over Fp
Fpk arithmetic

Mp

Mp2 3Mp 3Mp

Sp2 2Mp 2Mp

Mp6 6Mp2 18Mp

Sp6 2Mp2 + 3Sp2 12Mp

Mp12 3Mp6 54Mp

Sp12 2Mp6 36Mp

Sφ12(p) z2, z ∈ Fp12 , Norm(z) = 1 18Mp

za, for any z, a log a Sp12 + log a /3 Mp12 54 log a Mp

za, NormF
p12

/Fp(z) = 1 log a Sφ12(p) + log a /3 Mp12 36 log a Mp

NormF
p12

/Fp(z), for any z NormF
p12

/F
p6
/F

p2
/Fp(z) 59 Mp

zr, NormF
p12

/Fp(z) = 1 zpz1−t = zp(zp
6

)t−1 4616 Mp

check order(z) = r in Fpk NormF
p12

/Fp(z) = 1; zr = 1 4675 Mp

E(Fp) arithmetic

Doubling (Dblp) 2Mp + 5Sp 7Mp

Addition (Addp) 7Mp + 4Sp 11Mp

Scalar mult. [a]P log a Dbl + log a /3Add 10.7 log a Mp

[a1]P1 + [a2]P2
max(log a1, log a2)

(Dbl + 2/3Add)
max(log a1, log a2)

14.33Mp

E(Fp2) arithmetic

Doubling (Dblp2) 2Mp2 + 5Sp2 16Mp

Addition (Addp2) 7Mp2 + 4Sp2 29Mp

Scalar mult. [b]Q log b Dblp2 + log b /3Addp2 25.7 log b Mp

[b1]Q1 + [b2]Q2
max(log b1, log b2)

(Dblp2 + 2/3Addp2)
max(log b1, log b2)

35.33Mp

Pairing on a Barreto-Naehrig curve with log2 p = 461

Miller loop 14965Mp

Final powering 7911Mp

Pairing 22876Mp

A Estimations for Arithmetic and Pairing

Table 3 summarizes the estimates for arithmetic in the groups G1, G1, GT and for
the optimal ate pairing computation on a Barreto-Naehrig curve with log p = 461
bits.
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